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Relaxation of surface charge on rotating dielectric spheres:
Implications on dynamic electrorheological effects
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We have examined the effect of an oscillatory rotation of a polarized dielectric particle. The rotational
motion leads to a redistribution of the polarization charge on the surface of the particle. We show that the
time-averaged steady-state dipole moment is along the field direction, but its magnitude is reduced by a factor
that depends on the angular velocity of rotation. As a result, the rotational motion of the particle reduces the
electrorheological effect. We further assume that the relaxation of the polarized charge is arised from a finite
conductivity of the particle or host medium. We calculate the relaxation time based on the Maxwell-Wagner
theory, suitably generalized to include the rotational motion. Analytic expressions for the reduction factor and
the relaxation time are given and their dependence on the angular velocity of rotation will be discussed.
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I. INTRODUCTION

The prediction of the strength of the electrorheologi
~ER! effect is still a main concern in theoretical investigati
of ER fluids @1–5#. An ER fluid is a suspension of highl
polarized particles in an insulating host. The ER effect ori
nates from the induced interaction between the polarized
ticles in an ER fluid. Upon the application of an inten
electric field, the particles in ER fluid aggregate into cha
and then aggregate into columns in a short response
@3,4#. The rapid field-induced transition between the flu
and solid phase makes this material important both for w
industrial applications and for experimental and theoret
investigation.

In deriving the induced interactions between particles,
isting theories assume that the particles are at rest@6–10#. In
a realistic situation, the fluid flow exerts force and torque
the particles, setting the particles in both translational a
rotational motions. For instance, the shear flow in an
suspension exerts a torque on the particles, which leads
rotational motion of the particles about their centers@11#.
Recent experiments gave evidence that the induced fo
between the rotating particles can be different from the v
ues predicted by existing theories@12#.

To gain some insight into the phenomenon, we have
cently formulated a theoretical model, which describes
relaxation of the polarized charge on the surface of a u
formly rotating particle@13#. We showed that the rotationa
motion of the particles reduces the induced forces betw
the particles. We called the reduction of interparticle forc
due to the rotational motion of the particles the dynamic
effects@13#. In this paper, we extend the consideration to
arbitrary rotational motion. In particular, we will obtain th
steady-state dipole moment of a rotating sphere under a s
soidal oscillatory shear motion. We further assume that
relaxation of the polarized charge is due to a finite cond
tivity of the particle or host medium. We will derive an an
lytic expression for the relaxation time. The dependence
1063-651X/2001/64~6!/061501~4!/$20.00 64 0615
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the reduction factor and the relaxation time on the angu
velocity of rotation will also be calculated.

II. STEADY-STATE DIPOLE MOMENT

Consider a dielectric sphere under the influence of
electric-fieldEW 05E0ẑ; its induced dipole moment is give
by: pW 05p0ẑ. Assume that it is under a rotational motion
angular velocityvW 52v ŷ. For a rotating dielectric sphere i
an electric field, the rotational motion leads to a displa
ment of its polarized charges on the surface of sphere. A
result, there is a change of the dipole moment, described
vW 3pW . The surface charges also suffer from relaxation
various kinds, and the rate of change of the dipole momen
described by2(pW 2pW 0)/t, wheret is a relaxation time. The
two effects have to be balanced against each other, resu
in a steady-state dipole momentpW , which deviates from the
equilibrium dipole momentpW 0. Let the resultant dipole mo
ment bepW 5pxx̂1pyŷ1pzẑ. The rate of change of the dipol
moment is given by

dpW

dt
5vW 3pW 2

1

t
~pW 2pW 0!, ~1!

where the first term on the right-hand side is due to
rotational motion and the second term is due to a relaxa
process, in which the relaxation-timet is determined by the
details of the relaxation process. In component form, the
ferential equation reads

ṗx52
px

t
2vpz , ṗy52

py

t
, ṗz5vpx2

~pz2p0!

t
.

The equation forpy may be readily integrated to yieldpy

5py0e2J(t), whereJ(t)5*0
t dt/t. Sincet ~can be time de-

pendent! is real and positive,py vanishes ast goes to infinity.
To solve the equations forpx and pz , we use the complex
©2001 The American Physical Society01-1
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notation: let p̃5px1 ipz and p̃05 ip0 , p̃ can be found by
solving the following differential equation:

dp̃

dt
5S iv2

1

t D p̃1
p̃0

t
. ~2!

With the initial conditionp̃5 p̃0 whent50, Eq.~2! admits a
standard solution

p̃eI2 p̃05 p̃0E
0

teI

t
dt, I 5E

0

tS 1

t
2 iv Ddt, ~3!

where I is the integration factor. For a uniform rotation
motion, v5v0 is a constant,I 5t/t 2 iv0t, Eq. ~3! can be
solved

p̃5
p̃0

12 iv0t
~12 iv0te2t(12 iv0t)/t!.

As t goes to infinity, we obtain the steady-state solution fo
uniform rotation

p̃5
p̃0

12 iv0t
. ~4!

In general, the analytic solution of Eq.~3! can be found only
for a few simple cases and the integral must be evalua
numerically. We concentrate on the steady-state solution
sufficiently long time and Eq.~3! may indeed be solved ex
actly. By using the L’Hoˆpital’s rule, we find

p̃5 p̃0 lim
t→`

eI

teI İ
5

p̃0

12 ivt
, ~5!

where İ denotes the time derivative ofI. We have assumed
thatt is real and positive butv may be an arbitrary function
of time. Equation~5! is the general result for arbitrary rota
tional motion, being of the same form as Eq.~4!. However,
the transient solution has to be calculated numerically.

For a dielectric sphere undergoing a simple harmonic
cillation, u(t)5u0 sin(kt), the angular velocity is given by
v(t)5 u̇5u0k cos(kt). From Eq.~5!, the steady-state dipol
moment is

p̃5
p̃0

12 iu0kt cos~kt!
5p0

i 2u0kt cos~kt!

11u0
2k2t2cos2~kt!

. ~6!

The time dependence of the dipole moment is still period
Note that although the sphere is undergoing a simple
monic oscillation, the dipole moment does not exhibit
simple harmonic motion. Ift is independent of time, we ca
calculate the time average of the dipole moment

^px&
p0

50 and
^pz&
p0

5
1

A11u0
2k2t2

. ~7!
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As a result, the motion of particles reduces the ER effect.
define the reduction factorR as

R5
^pz&
p0

5
1

A11u0
2k2t2

. ~8!

The reduction is even more significant at high frequenc
R'1/u0kt.

III. CALCULATION OF RELAXATION TIME

So far, our proposed relaxation time has no explicit e
pression. If the relaxation process is originated from a fin
conductivity of the particle or host medium, then we c
calculate the relaxation time based on the Maxwell-Wag
theory of leaky dielectrics@14#. For a~nonrotating! spherical
inclusion embedded in a host medium, the expression is

t5e0S e112em

s112sm
D , ~9!

where e1 ,em (s1 ,sm) denote the dielectric constant~con-
ductivity! of the sphere and host medium, respectively,e0 is
the permittivity of free space. For typical values of the p
mittivities and conductivities of common ER fluids, the r
laxation time ranges from microseconds to milliseconds, a
the dynamic ER effect can be observed in experiments.

In order to account for the impact of a rotational motio
on the relaxation time, we first replacee1 in Eq. ~9! by e1
511x1, wherex1 is the susceptibility of the sphere. W
already showed that the dipole moment is reduced by a
tor R. If we assume that the polarization is uniform throug
out the sphere, which can be achieved when the oscilla
frequency is high, we may writee1511Rx1 in Eq. ~9!.
Physically, it means that the effective polarization of t
sphere is reduced as a result of the rotational motion, lead
to a reduction of the effective dielectric constant of t
sphere. After some simplifications, we obtain

t5t`1
t02t`

A11u0
2k2t2

, ~10!

where

t`5e0S 112em

s112sm
D and t05e0S e112em

s112sm
D .

It may be shown thatt5t0 for ku050 andt→t` for ku0
→`. Equation~10! is a self-consistent equation fort and we
may calculate the relaxation time self-consistently.

IV. NUMERICAL RESULTS

To examine the dependence of the reduction factorR on
the angular velocityku0, we plot R vs ku0 in Fig. 1 for
several different values oft0. Without loss of generality~i.e.,
in terms of some unit relaxation time!, we chooset`51 and
t052, 4, and 8, respectively. The reduction factor decrea
rapidly with the increase ofku0, which means that the dipole
1-2
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FIG. 1. The reduction factorR ~left panel! and
the relaxation-time~right panel! t for t`51. The
reduction factor decreases drastically for increa
ing ku0. The relaxation time reaches its minimum
value at largeku0.
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moment is greatly reduced when both the oscillation f
quencyk and the oscillation amplitudeu0 become large.

Next, we see how the relaxation time depends onku0.
From Eq.~10!, t is bounded betweent0 andt` . The lower
bound t` is reached whenku0 tends to infinity, which is
achieved at large frequency. For a larger value oft0, the
relaxation time decreases more rapidly withku0. The condi-
tion of high-oscillation frequency reads

k@
1

t`
. ~11!

The time evolution of the dipole moment is worth studyin
In Fig. 2, we plot the steady-state solution of the perpend
lar componentpx /p0 and parallel componentpz /p0 against
time. We sett052 andt`51, t is then calculated from Eq
~10!. We first setk51 and vary the oscillation amplitudeu0.
In the left panel of Fig. 2, we plotpx /p0 andpz /p0 against
time for u05p/4, u05p/2, and u05p, respectively. For
each value ofu0, the magnitude of the perpendicular com
ponent (px /p0) has a maximum value of 0.5 and it has
06150
-

.
-

local minimum att5p/k. When the oscillation amplitude
increases, the local minimum value decreases, showin
large variation ofpx /p0. Next, we concentrate on the parall
component (pz /p0). When the oscillation amplitude in
creases,pz /p0 reduces in general, although the maximu
value is always equal to unity. These results are expec
from Eq. ~7!,

^px&
p0

50 and
^pz&
p0

5
1

A11u0
2k2t2

.

Hence, on the average,^pz&/p0 must decrease when we in
crease the oscillation amplitudeu0.

Now, we examine the case for a constant amplitudeu0 but
varying frequencyk. This is a realistic case, since in expe
ment, we can hardly increase the amplitude but we may e
ily change the frequency. In the right panel of Fig. 1, w
chooseu05p/4 andk51 and 3. The results for constantk
and constantu0 show similar time dependence. However,px
and pz show a larger variation in their magnitudes, if w
increase the value ofk. It should be remarked that we hav
FIG. 2. The reduced dipole momentpx /p0

andpz /p0 plotted as a function of time for vari-
ous frequency dependentt (t052,t`51).
1-3
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assumed that the oscillation frequency is high so that
relaxation time is nearly constant during the motion.

V. DISCUSSION AND CONCLUSION

Here, a few comments on our results are in order. As
steady-state solution is general, one can extend the calc
tions to an arbitrary rotational motion. We have shown t
the motion of particles reduces the strength of the dip
moment. It is natural to further calculate the interpartic
force between two rotating spheres. We expect that the in
particle force will be reduced substantially because the fo
between parallel dipoles changes from attractive to repul
when their orientation varies from the transverse to the l
gitudinal field case.

So far, our derivation of relaxation time is based on t
mean-field theory. We may extend the Maxwell-Wagn
theory to the polarization relaxation of oscillating particle
In this case, we should add a termrPvW to the polarization
current density, whererP is the polarized charge density an

vW 5vW 3rW is the rotating velocity. However, it is not possib
to convert the extra term into a dielectric constant and
generalization becomes more complicated due to the non
form polarized charge density inside the rotating spher
inclusions. We are currently examining the solution of t
more complicated boundary-value problem.

The flow in ER fluid may be nonsteady in usual operat
situations. But the prevailing situation in theory and simu
tion of ER fluids is to use formulas derived with respect to
steady flow. To remedy this drawback, we will endeavor
develop a calculation method for suspension hydrodynam
m

m
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and use it to study the interaction between particles and
oscillating fluid, and derive formulas of the force and torq
exerted on particles for a suspension@15#.

In this paper, hydrodynamic~HD! interaction effects have
not been considered. However, electrorheological fluids
locally very concentrated suspensions and in considering
namic effects, it seems that HD effects can be strong. Th
a future problem.

In conclusion, we have investigated the problem of h
the dipole moment of a dielectric sphere varies with time
an arbitrary rotational motion. We have developed a form
ism for the rotational motion of the sphere and derived
relaxation time by using the mean-field theory. We ha
shown that the time-averaged steady-state dipole mome
along the field direction, but its magnitude is reduced by
factor that depends on the frequency of oscillation. As a
sult, the motion of particles reduces the ER effect. We furt
calculate the relaxation time based on the Maxwell-Wag
theory. The dependence of the reduction factor and the re
ation time on the angular velocity of rotation has also be
discussed.
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